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Abstract: 26 

The seminal fluid of insects demonstrates complexity at several levels. At the molecular level, 27 

it includes numerous biochemical classes, with protein sequences varying across taxa. At the 28 

functional level, seminal components induce diverse changes in female behavior, physiology, 29 

and anatomy. At the structural level, seminal components can be packaged into higher-order 30 

structures or contribute to multi-layered ejaculate conformations. Seminal components are 31 

produced by reproductive glands whose structure and origins vary among insect species. The 32 

biology of these glands and their products provide insights into the fundamentals of fertility, 33 

reproductive health, and the evolutionary forces that shape reproduction. 34 

 35 

 36 

 37 

 38 

 39 

 40 

 41 

 42 

  43 
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Introduction 44 

The female insect is changed by mating. Behaviorally, physiologically, even anatomically, the 45 

mated female differs dramatically from her virgin self. In many cases, these changes are 46 

induced by proteins and other molecules carried in the male’s ejaculate. Exactly how the post-47 

mating phenotype differs from the pre-mating condition varies across taxa, being honed by 48 

selective forces that must strike a balance between the male-female cooperation necessary to 49 

achieve a successful fertilization, and the broader, often divergent, evolutionary interests of the 50 

sexes.  51 

 52 

The male reproductive glands, particularly the accessory glands, are tasked with the production 53 

of the non-sperm component of the ejaculate (the seminal fluid) in insects. Divergent in 54 

number, structure, and developmental origin, they are functional analogues of mammalian 55 

glands such as the prostate and seminal vesicles. In this chapter, we begin by outlining the 56 

complexity of insect seminal fluid in terms of both its organization and its molecular 57 

composition. Following this, we briefly summarize the general functions of the secretions of 58 

male insect reproductive glands, which induce profound changes in female behavior, 59 

physiology, and anatomy. Much of our understanding of the activities of seminal fluid 60 

components comes from the fruit fly Drosophila melanogaster. Therefore, we describe two 61 

paradigmatic examples of its seminal fluid proteins, sex peptide (SP) and ovulin, before 62 

outlining what is known about another seminal fluid component, the male-transferred hormone 63 

20-hydroxyecdysone, in the malaria vector mosquito Anopheles gambiae. We then review the 64 

considerable variation in the ultrastructure of reproductive glands across insects, including a 65 

detailed overview of D. melanogaster accessory glands and their two distinct secretory cell 66 

types, the main and secondary cells. Finally, we discuss forces that are thought to have 67 

influenced the evolution of accessory glands and their products. This evolutionary framework 68 
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helps to explain some of the more surprising functions of accessory gland products, such as 69 

those that cause female harm.  70 

 71 

1) The complexity of insect seminal fluid  72 

The ejaculate is composed of sperm and seminal fluid, the latter encompassing a rich diversity 73 

of lipids, proteins, carbohydrates, nucleic acids, water, hormones, mucus, vitamins, vesicles, 74 

microbes and, in some species, glandular cells (Avila et al., 2011; Gillott, 2003; Hopkins et al., 75 

2017; Perry et al., 2013; Poiani, 2006).  In many insects, the protein component of the ejaculate, 76 

derived largely from the male accessory glands, is particularly diverse. To date, 121 accessory 77 

gland-expressed genes have been identified in the malaria vector An. gambiae (Baldini et al., 78 

2012; Dottorini et al., 2007; Rogers et al., 2009), while nearly 100 seminal fluid proteins (SFPs) 79 

are transferred to females during mating in another mosquito, the yellow fever vector Aedes 80 

aegypti (Sirot et al., 2011). In D. melanogaster, over 200 SFPs are known. These SFPs 81 

encompass a range of functions from antioxidants and lectins to proteases and protease 82 

inhibitors (Avila et al., 2011, 2015; Findlay et al., 2008; Gillott, 2003; Mcgraw et al., 2015; 83 

Ram & Wolfner, 2007b); proteases are particularly diverse in both insect and mammalian 84 

seminal fluid (Laflamme & Wolfner, 2013; Mueller et al., 2004). In Drosophila (and likely in 85 

other insects), SFPs’ amino acid diversity is further supplemented by a variety of post-86 

translational modifications, such as glycosylation, that may further influence their functions 87 

(Gligorov et al., 2013). 88 

 89 

Insect ejaculates are generally of two types (Zizzari et al., 2014). First, sperm may be free-90 

swimming within a seminal fluid medium, as in D. melanogaster. Alternatively, the ejaculate 91 

may be transferred as a spermatophore, as in butterflies and springtails, where both sperm and 92 

non-sperm components are encased within a proteinaceous capsule (Meslin et al., 2017; Zizzari 93 
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et al., 2014). Spermatophores may adopt complex, multi-layered conformations as in the rove 94 

beetle Aleochara cutula. In this species, the male secretes a ‘tube-like structure’ into the female 95 

sperm storage organ, which serves to guide the elongation of a secondary tube that will 96 

eventually inflate and burst to release sperm (reviewed in Meslin et al., 2017).  97 

 98 

2) General functions of male insect reproductive gland products 99 

More than just a vehicle for sperm, seminal fluid components have been implicated in the 100 

induction of diverse female post-mating phenotypes (Avila et al., 2011; Gillott, 2003; Hopkins 101 

et al., 2017; Mcgraw et al., 2015; Perry et al., 2013; Poiani, 2006). SFPs have been shown to 102 

be particularly important in driving these changes, at least in D. melanogaster. Roles of SFPs 103 

in females can be broadly categorized into those affecting behavior, physiology, or anatomy. 104 

Some SFPs also play an important role within the male, by processing other seminal proteins 105 

as they pass through the male’s reproductive tract en route to the female (LaFlamme et al., 106 

2012, 2014; Laflamme & Wolfner, 2013). Others promote activities of the sperm within the 107 

female reproductive tract, such as the successful release of sperm from storage (Avila et al., 108 

2010). 109 

 110 

a) Modulation of female behavior 111 

After mating, females of many insect species show reduced receptivity to re-mating. This 112 

change may be short-term, e.g. just a few days in the Mediterranean fruit fly Ceratitis 113 

capitata (Miyatake et al., 1999), or permanent, as suggested by some studies of the dengue 114 

vector mosquito Ae. aegypti (Craig, 1967). In D. melanogaster females, a ~2-week reduction 115 

in receptivity post-mating, accompanied by a suite of specific rejection behaviors, is 116 

controlled by the SFP sex peptide (SP; see section Sex Peptide of Drosophila melanogaster) 117 

(Bussell et al., 2014; Connolly & Cook, 1973). 118 
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 119 

Injection of accessory glands, or their extracts, into virgin females can elicit some of the 120 

same phenomena as mating (Garcia-Bellido, 1964). Many of these effects can also be 121 

induced by injecting purified SP into the circulation of virgin females, indicating that SP 122 

can also access targets from the hemolymph (Chen et al., 1988). Similarly, in Ae. aegypti, 123 

injection of accessory gland extracts into the thorax of virgin females or implantation of 124 

whole accessory glands prevents re-mating (Craig, 1967; Helinski et al., 2012). In An. 125 

gambiae, injection of accessory gland extracts into virgin females makes them less likely to 126 

remate (Shutt et al., 2010). Furthermore, An. gambiae females mated to spermless males 127 

(with fully functional accessory glands) exhibit typical changes in post-mating behavior, 128 

such as the induction of blood-feeding and mating refractoriness, indicating that sperm are 129 

not needed for these responses (Thailayil et al., 2011). 130 

 131 

Mating often also causes a change in female feeding behavior. Nutritional geometry 132 

experiments in house crickets (Gryllus bimaculatus) have demonstrated a shift in dietary 133 

preference towards protein-rich food sources following mating (Tsukamoto et al., 2014). In 134 

D. melanogaster, SP elevates female appetite and leads females to favor sodium- and 135 

protein-rich food sources (Ribeiro & Dickson, 2010; Vargas et al., 2010; Walker et al., 136 

2015).  137 

 138 

b) Modulation of female physiology 139 

In the mated female, seminal molecules affect egg production and ovulation. Consumption 140 

of a spermatophore in the two-spot ladybird (Adalia bipunctata) is associated with an 141 

increase in oviposition rate. This effect is independent of female diet, suggesting that it is 142 

driven by molecules from the spermatophore rather than through broader nutritional effects 143 
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(Perry & Rowe, 2008). Injection of male accessory gland extracts into virgin female cotton 144 

bollworms (Helicoverpa armigera) is also associated with earlier egg maturation and 145 

oviposition (Jin & Gong, 2001). In Aedes species, increased egg-production is induced by 146 

accessory gland extracts (Klowden & Chambers, 1991). In D. melanogaster the analogous 147 

effect has been shown to be due to the activity of specific SFPs, such as SP and ovulin, 148 

which act through the female’s nervous or neuromuscular systems (see section Modulation 149 

of female anatomy, below). An increase in egg-laying has been shown to be a mating-150 

induced effect that is independent of sperm in An. gambiae (Thailayil et al., 2011), again 151 

suggesting a role for seminal fluid components. 152 

 153 

Transfer of SP to D. melanogaster females induces an increase in juvenile hormone 154 

synthesis (Carvalho et al., 2006; Moshitzky et al., 1996). This in turn is associated with 155 

diminished female sex pheromone production (Bontonou et al., 2015), vitellogenic oocyte 156 

progression (Soller et al., 1999), and reduced resistance to systemic bacterial infection 157 

(Schwenke & Lazzaro, 2017). The latter is suggested to reflect trade-offs between 158 

investment in reproduction and self-maintenance (Schwenke & Lazzaro, 2017). Conversely, 159 

SP activates expression of genes encoding antimicrobial (AMP) peptides, via the Toll and 160 

Imd pathways, perhaps to protect against sexually transmitted microorganisms (Peng et al., 161 

2005). SP also influences gut physiology and growth, leading to the production of more 162 

concentrated excreta (Apger-McGlaughon & Wolfner, 2013; Cognigni et al., 2011; 163 

Lemaitre & Miguel-Aliaga, 2013). 164 

 165 

c) Modulation of female anatomy 166 

The SFP ovulin (see section Ovulin of Drosophila melanogaster) induces visible physical 167 

changes in the conformation of the D. melanogaster female reproductive tract (Mattei et al., 168 
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2015). By stimulating octopaminergic signalling, ovulin relaxes the musculature 169 

surrounding the oviduct (Rubinstein & Wolfner, 2013). This relaxation leads to the 170 

uncurling of a tightly coiled loop in the upper oviduct within 90-minutes of mating, allowing 171 

for transit of an oocyte (Mattei et al., 2015). Another Drosophila SFP, Acp36DE, relaxes a 172 

constriction in the upper uterus, facilitating the passage of sperm into storage (Avila & 173 

Wolfner, 2009; Mattei et al., 2015).  174 

 175 

d) Supporting the activities of sperm 176 

Across insects, ejaculate components can form novel structures within the female 177 

reproductive tract (Meslin et al., 2017; Parker, 1970). These ‘mating plugs’ provide a 178 

physical barrier to the entry of sperm from rival males, and have been implicated in reducing 179 

female receptivity to remating (Avila et al., 2011; Lung & Wolfner, 2001).  180 

 181 

In some butterfly species, the mating plug includes an external component that covers the 182 

female copulatory opening. In contrast, in some other insects, including D. melanogaster, 183 

the mating plug sits within the posterior uterus at the distal end of the reproductive tract 184 

(Lung & Wolfner, 2001). The D. melanogaster mating plug is bipartite, combining a 185 

posterior portion composed predominantly of ejaculatory bulb derived proteins, such as 186 

PEBme (a protein with some similarity to homopolymer-forming proteins in spider-silk), 187 

PEBII, and PEBIII, with an anterior section composed of accessory gland-derived proteins 188 

such as Acp36DE (Avila et al., 2011, 2015; Bertram et al., 1996b; Bretman et al., 2010; 189 

Lung & Wolfner, 2001). While the posterior component forms within the first 5 min of 190 

mating, the anterior section is formed by around 20 min after the start of mating. 191 

 192 
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Mating plugs also function in promoting sperm storage and retention. The seminal fluid of 193 

An. gambiae coagulates to form a mating plug in females and is required for the initial entry 194 

of sperm into the female storage organs (Giglioli & Mason, 1966; Rogers et al., 2009). The 195 

An. gambiae accessory gland-derived SFP transglutaminase cross-links the SFP Plugin to 196 

form the mating plug, which is slowly degraded in the female reproductive tract over the 197 

course of 1-2 days (Giglioli & Mason, 1966).  198 

 199 

Individual SFPs have been identified that regulate the storage of sperm in females. For 200 

example, D. melanogaster Acp36DE is required for sperm accumulation into the storage 201 

organs by ‘corralling’ sperm and by altering uterine conformation, as noted in section 202 

Modulation of female anatomy(Avila & Wolfner, 2017; Bertram et al., 1996; Neubaum & 203 

Wolfner, 1999) Once in storage, the SFP Acp29Ab, a C-type lectin, is required for the 204 

retention of sperm (Wong et al., 2008), while the SFPs SP, seminase, CG1652, CG1656, 205 

CG9997, and CG17575 are required for efficient release of sperm from storage (Avila et al., 206 

2010; Ram & Wolfner, 2007a). In the hymenopteran species Apis mellifera and Atta 207 

colombica, fertility may be promoted by the viability enhancing effect of accessory gland 208 

secretions on sperm (Avila et al., 2011; Susanne P.A. den Boer, Baer, et al., 2009; Susanne 209 

P.A. den Boer, Boomsma, et al., 2009). However, in polyandrous lineages, this promotion 210 

of viability is restricted to self-sperm and actively decreases the viability of rival sperm (S. 211 

P A den Boer et al., 2010). 212 

 213 

3) Seminal fluid proteins in focus 214 

a). Sex Peptide of Drosophila melanogaster 215 

Transplantation of accessory glands and injection of their extracts into virgin females each 216 

initially implicated their products in driving post-mating reduction in female sexual receptivity 217 
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and elevation of egg-laying (Bodnaryk, 1978; Garcia-Bellido, 1964; Kummer, 1960; Leahy, 218 

1966). These effects were traced to a 36-amino acid ‘sex peptide’ (SP) by fractionation 219 

experiments and injection of purified sex peptide into the female abdominal cavity (Chen et 220 

al., 1988), as well as by ectopic expression of SP in transgenic virgin females (Aigaki et al., 221 

1991), and phenotypic characterization of the effects of RNAi-knockdowns (Chapman et al., 222 

2003) or SP-knockouts (Liu & Kubli, 2003). The name ‘sex peptide’ derives from early 223 

chromatographic studies by Fox, who noted the presence of male specific peptides in the male 224 

body fluid (Bodnaryk, 1978; Fox et al., 1959). 225 

 226 

SP is secreted by ‘main cells’ (Gligorov et al., 2013; Kalb et al., 1993) into the accessory gland 227 

lumen, where it may reach quantities of 3.1pMoles (Kubli, 1992). During mating, mature males 228 

transfer between 30% and 50% of the gland’s SP (Kubli, 1992), and are seemingly able to 229 

exercise some control over the quantity that they transfer (see section Phenotypic plasticity). 230 

SP alters the transcriptome of the mated female, significantly changing the level of RNAs 231 

relating to immunity, egg development, behavior, early embryogenesis, nutrient sensing, and 232 

phototransduction (Gioti et al., 2012). In females, SP also induces many of the behavioral, 233 

physiological, and anatomical effects noted in section 2, as well as endocrine changes through 234 

activation of juvenile hormone synthesis (Moshitzky et al., 1996) (Figure 1).  235 

 236 

SP acts through a G-protein coupled receptor (sex peptide receptor; SPR) primarily in neurons 237 

that innervate the female reproductive tract to induce the post-mating change in receptivity 238 

(Hasemeyer et al., 2009; Yang et al., 2009; Yapici et al., 2008). The involvement of additional 239 

receptors has also been suggested (Haussmann et al., 2013). While SP’s precise neural targets 240 

are not yet known, the ultimate target of its signalling pathway is likely the brain. Targets in 241 
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the brain may also contribute to the mechanism by which SP reduces daytime ‘siesta’ sleep 242 

(Isaac et al., 2010) and elevates aggression towards other females (Bath et al., 2017). 243 

 244 

 
 

Figure 1. The many effects induced by the seminal sex peptide in mated 

female Drosophila melanogaster. 

Modified from Kubli, E., Bopp, D., 2012. Curr. Biol. 13, R520–R522. 

 245 

 246 

While SP is able to induce physiological change in females on its own, its effects are extended 247 

in the presence of sperm (David, 1963; Manning, 1962, 1967). Studies in the 1960s noted that 248 

the female post-mating response could be separated into a short- and long-term component. 249 

The former occurs within the first 48 hours of mating and is independent of sperm, while the 250 

latter can extend beyond 10 days post-mating but requires sperm (the ‘sperm effect’) (Manning, 251 

1962, 1967). It has since been shown that SP binds to both the head and tail of sperm via the 252 

N-terminus region of the peptide (Peng et al., 2005), a process that depends upon the action of 253 

an interdependent network of SFPs (Findlay et al., 2014; Ram & Wolfner, 2007a, 2009; Sitnik 254 
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et al., 2016). SP’s C-terminus, which induces much of the female post-mating response 255 

(Schmidt et al., 1993), is gradually released from the tails of stored sperm by cleavage of SP at 256 

a trypsin site by an unknown protease (Peng et al., 2005). Stimulation of juvenile hormone 257 

synthesis, which is achieved by the peptide’s N-terminus, is thought to be carried out by free 258 

SP in the ejaculate, prior to sperm-binding (Liu & Kubli, 2003; Moshitzky et al., 1996). 259 

 260 

b). Ovulin of Drosophila melanogaster 261 

Ovulin, a 264-amino acid prohormone-like seminal protein (Monsma & Wolfner, 1988), is one 262 

of the most rapidly-evolving proteins in Drosophila (Aguade et al., 1992). Found in both 263 

secretory cell types in the male’s accessory gland (Monsma et al., 1990), ovulin is transferred 264 

to females during mating, where it acts to increase ovulation rate (Herndon & Wolfner, 1995). 265 

In particular, it induces the ovulation of mature oocytes that have accumulated in the unmated 266 

female, clearing the way for the increased oogenesis triggered by SP (Chapman et al., 2001). 267 

 268 

During mating, some ovulin enters the mated female’s circulation (Monsma et al., 1990); the 269 

remainder stays within her reproductive tract, localizing primarily to the upper oviduct and the 270 

base of the ovaries (Heifetz et al., 2000). In the female reproductive tract, ovulin is cleaved by 271 

the seminal metalloprotease Semp1 (LaFlamme et al., 2012). During ejaculation, Semp1 is 272 

activated by the serine protease SFP seminase as it transits through the male reproductive tract 273 

(LaFlamme et al., 2014). Semp1 then cleaves ovulin only after it is transferred to the female 274 

(LaFlamme et al., 2012) (Figure 2). Full-length ovulin and two of its cleavage products 275 

stimulate ovulation (Heifetz et al., 2005). 276 

 277 

Ovulin increases octopaminergic signaling in the female’s reproductive tract, although its site 278 

of action is unknown (Rubinstein & Wolfner, 2013). As noted in section Modulation of female 279 
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anatomy, this leads to relaxation of the oviduct musculature, changing oviduct conformation, 280 

thus facilitating ovulation (Mattei et al., 2015). Although ovulin is only detectable in the mated 281 

female for a few hours after mating, its action increases the number of boutons made by 282 

octopaminergic neurons on the oviduct musculature (Rubinstein & Wolfner, 2013). Thus, 283 

ovulin’s effects can in theory persist long after it has disappeared. However, its effects are only 284 

detectable on the first day post-mating; after that, other factors, such as SP activity (Chapman 285 

et al., 2003; Liu & Kubli, 2003), account for the increased egg production. 286 

 287 

 288 

 
 

Figure 2. The proteolytic pathway that cleaves ovulin. The seminal serine protease seminase 

cleaves the inactive precursor form of the seminal metalloprotease Semp1 as the two move 

through the male during ejaculation. This cleavage activates Semp1, but the latter only 

cleaves its target, ovulin, once the proteins have entered the female. Arrows on the diagrams 

or photographs below the pathway show where the cleavages occur. 

 

 289 

c). 20-hydroxyecdysone of Anopheles gambiae 290 

Although SFPs are the major mediator of female post-mating phenotypes in Drosophila and 291 

most insects that have been studied, in An. gambiae the steroid hormone 20-hydroxyecdysone 292 

(20E) acts as a major effector of post-mating changes (Gabrieli et al., 2014). 20E is a common 293 
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insect ecdysteroid that regulates molting in juvenile stages (Yamanaka et al., 2013) and 294 

multiple processes in adults, including controlling lifespan (Tricoire et al., 2009), learning 295 

(Geddes et al., 2013), sleep and social interactions (Ishimoto & Kitamoto, 2011). 296 

 297 

An. gambiae males produce 20E in their accessory glands and pass it to the female reproductive 298 

tract during mating (Pondeville et al., 2008). Sexual transfer of 20E sets off a series of events 299 

that ends with the inhibition of female remating (Gabrieli et al., 2014) and the induction of 300 

oogenesis and oviposition (Baldini et al., 2013; Gabrieli et al., 2014). Furthermore, the mating-301 

induced increase in oogenesis simultaneously decreases the efficiency of the An. gambiae 302 

immune system to kill the malaria-causing Plasmodium parasites (Rono et al., 2010). 303 

 304 

Within the female An. gambiae reproductive tract, degradation of the mating plug occurs over 305 

a similar timeframe to the reduction in 20E level (Baldini et al., 2013). Given that sexual 306 

transfer of 20E stimulates oviposition (Gabrieli et al., 2014), that large titers of 20E are 307 

transferred to females within the mating plug (Baldini et al., 2013), and the timing of the plug’s 308 

degradation within the female, it may be that the plug acts as a store of 20E, gradually releasing 309 

the hormone following its transfer to females.  310 

 311 

Interestingly, mating plug formation and 20E transfer may have coevolved in anopheline 312 

mosquitoes. Species that transfer high levels of 20E during mating produce a fully coagulated 313 

mating plug, and these species tend to be found in global regions where malaria transmission 314 

is high. Conversely, the species that have been studied from areas with low malaria 315 

transmission rates neither form a plug nor transfer 20E to females during mating (Mitchell et 316 

al., 2015). This has led to the suggestion that the divergent sexual transfer of 20E has influenced 317 

the ability of anopheline species to transmit malaria. 318 



 15 

 319 

4) The diversity of insect reproductive glands 320 

A typical insect male reproductive system consists of an ejaculatory duct, with an ejaculatory 321 

bulb at its base, and testes and accessory glands branching off from its proximal end. Products 322 

of these tissues meet during passage through the ejaculatory duct en route to the female.  323 

 324 

Across insects, the accessory glands are the most studied contributor to the ejaculate. There is 325 

great morphological diversity among these glands (Figure 3), ranging from Drosophila’s two 326 

lobes to the house cricket’s (Acheta domesticus) tangled mass of several hundred tubules 327 

(Chen, 1984). Even within a single family, such as Diptera, there is considerable 328 

morphological diversity of accessory glands (Throckmorton, 1962).  329 

 330 

 
 

Figure 3. Diagram of the male reproductive tracts of several insects, with reproductive 

glands shown in blue. Within-tract views are drawn to-scale. As noted in the text, male 

reproductive glands’ developmental origins differ among insects so the blue tissues, although 

analogous in function, are not necessarily homologous. 
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Drawing by S. Suarez is reprinted from McGraw, L.A., Suarez, S.S., Wolfner, M.F., et al., 

2015. Bioessays 37, 142–147 with permission. 

 

 331 

Species vary in accessory gland number. For example, male mealworm beetles (Tenebrio 332 

molitor) contain a pair of tubular accessory glands as well as a separate pair of bean-shaped 333 

accessory glands, whereas males of Drosophila species and the Colorado potato beetle 334 

(Leptinotarsa decemlineata) each have just a single pair of accessory glands (PChen, 1984). 335 

This morphological diversity is paralleled in the developmental origins of insect accessory 336 

glands, which may be ectodermal, mesodermal, or both (Leopold, 1976). Indeed, in the 337 

Queensland fruit fly (Bactrocera tryoni), males have a pair of highly-innervated, sac-shaped 338 

mesoderm–derived glands as well as three or four pairs of spongy, distally bifurcated 339 

ectodermic glands (Radhakrishnan et al., 2009). 340 

 341 

The cellular complexity of accessory glands is also variable. For example, the bean-shaped 342 

glands of T. molitor contain seven distinct secretory cell types, whereas the accessory glands 343 

of Drosophila and Leptinotarsa decemlineata contain two and one visibly different cell type 344 

respectively (Chen, 1984). The accessory glands of Ae. aegypti have anterior and posterior 345 

portions that differ in cell-type and density, as well as in the proteins - and potentially other 346 

secretory materials - they produce and contain (Alfonso-Parra et al., 2014; Dapples et al., 347 

1974). Transplantation experiments have demonstrated that the anterior accessory gland cells 348 

contain the active molecule(s) that elicit the post-mating female phenotypes of inhibited re-349 

mating and increased egg-laying (Ramalingam & Craig, 1978). Less is known about the 350 

posterior cells of the Ae. aegypti accessory gland, but they have been suggested to secrete a 351 

mucus-like substance that binds granules secreted from the anterior cells (Ramalingam, 1983).  352 
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 353 

Different reproductive glands, as well as different cell types in these glands, work 354 

interdependently to produce the seminal fluid. For example, the D. melanogaster mating plug 355 

includes contributions from at least the ejaculatory bulb and accessory glands (Avila et al., 356 

2015; Bretman et al., 2010; O Lung & Wolfner, 2001). In another case, spermatophores in 357 

beetles, crickets, and moths are composed of layers derived from the secretions of different 358 

reproductive glands (Grimnes et al., 1986; Meslin et al., 2017). Among species within the 359 

suborder Ensifera, the ‘rough glands’ produce the larger spermatophylax component of the 360 

spermatophore, while the ‘smooth glands’ produce the ampulla, which bears the sperm (Lewis 361 

& South, 2012). In the cabbage white butterfly (Pieris rapae), both the accessory glands and 362 

the distal section of the mating duct contribute to the soft inner matrix of the spermatophore, 363 

whereas the proximal region contributes most to the tough outer envelope (Meslin et al., 2017). 364 

 365 

5) The accessory glands of Drosophila melanogaster 366 

Each lobe of the D. melanogaster male accessory gland is an epithelium that consists of a single 367 

layer of ~1000 binucleate secretory cells, encased by a muscular sheath (Figure 4) (Bairati, 368 

1968). The secretory cells belong to two morphologically and biochemically distinct types, 369 

whose development is differentially specified by the action of Hox, or other homeodomain, 370 

proteins (Bertram et al., 1992; Federer & Chen, 1982; Gligorov et al., 2013; Kalb et al., 1993; 371 

Monsma et al., 1990).  Small, flattened, and hexagonal in shape, the ‘main cells’ account for 372 

96% of the secretory cells. Main cells produce SP (DiBenedetto et al., 1990), and several other 373 

SFPs including the proteases Semp1, seminase, and CG9997, as well as other proteins 374 

important for the binding of the sex peptide to sperm (DiBenedetto et al., 1990; Findlay et al., 375 

2014; Gligorov et al., 2013; Ram & Wolfner, 2009). At the distal tips of the accessory glands, 376 

~40 secondary cells protrude into the lumen (Bertram et al., 1992). These large, spherical cells 377 
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contain numerous vacuoles as well as secretory granules and filamentous bodies that resemble 378 

structures found among sperm in the female storage organs (Bairati, 1968; Monsma et al., 379 

1990; Perotti, 1971). Secretion granule-like structures have also been observed in the accessory 380 

gland lumens of a number of insects, including species of leafhoppers (Zhang et al., 2016), 381 

bees (Cruz-Landim & Dallacqua, 2005), and mosquitoes (Chen, 1984). 382 

 383 

 
 

Figure 4. The Drosophila melanogaster male reproductive tract. This drawing, 

approximately to scale, shows the male reproductive glands and testes. Insets show the 

position and appearance of the two secretory cell types of the male’s accessory glands; 

nuclei in these binucleate cells are shaded. 

Drawing by J. Sitnik is reprinted from Gligorov, D., Sitnik, J.L., Maeda, R.K., et al., 2013. 

PLOS Genetics e1003395, with permission. 

 

Secondary cells produce a cell-type specific set of SFPs including some of those required for 384 

the sperm-binding and storage of SP (Gligorov et al., 2013; Minami et al., 2012; Sitnik et al., 385 

2016). Unlike main cells, secondary cells continue to grow throughout the life of the adult fly 386 

and, in older multiply-mated males, can delaminate from the apical surface of the epithelium, 387 

migrate towards the proximal end of the gland, and eventually can be transferred to females in 388 
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the ejaculate (Leiblich et al., 2012). These processes are under the control of bone 389 

morphogenetic protein (BMP) signalling and seem to be accelerated by age (as well as mating 390 

frequency)(Leiblich et al., 2012). The age-dependent growth and delamination has led to the 391 

suggestion that the Drosophila accessory gland, and its secondary cells in particular, can serve 392 

as a model for the human prostate (Wilson et al., 2017).  393 

 394 

BMP-signalling in the secondary cells also drives the secretion of small, ~30-100nm diameter, 395 

extracellular vesicles (exosomes) and secretory organelles termed dense core granules 396 

(Corrigan et al., 2014; Leiblich et al., 2012; Redhai et al., 2016). Each cell contains ~10 dense 397 

core granules, of which approximately 4 are lost during mating and replenished within ~24 398 

hours (Redhai et al., 2016). Blockage of BMP-mediated secretion in secondary cells impairs 399 

the male’s ability to decrease remating by his mate, but does not affect his ability to stimulate 400 

her egg production (Corrigan et al., 2014; Leiblich et al., 2012). At least part of these effects 401 

have been suggested to depend on secondary cell exosomes, which have been reported to fuse 402 

with sperm once inside the female and to associate with female reproductive tract tissues 403 

(Corrigan et al., 2014). Such fusion could potentially introduce RNAs, proteins, or other 404 

molecules to the sperm or female tissues, thereby influencing the female’s post-mating 405 

response. This model is based on studies in mammals, where the contents of exosomes secreted 406 

by malignant cells have been reported to prime nearby tissues for metastatic invasion (Hoshino 407 

et al., 2015; Rak, 2015), and where exosomes from male reproductive tissues have been shown 408 

to fuse with sperm and affect sperm activation, capacitation, and motility (Aalberts et al., 409 

2013). These ‘epididymosomes’ and ‘prostasomes’ can deliver regulatory RNA species 410 

(including tRNA fragments, Y RNAs and microRNAs), as well as growth factors and cytokines 411 

(Aalberts et al., 2013; Colombo et al., 2014; Vojtech et al., 2014), in combinations sensitive to 412 
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the male’s rearing environment and have been suggested to transmit information 413 

transgenerationally (Q. Chen et al., 2016; Qi Chen et al., 2016; Sharma et al., 2016).  414 

 415 

6) Evolution of insect reproductive glands and their products 416 

Several aspects of reproductive gland biology are commonly found among insects: the 417 

existence of accessory glands, along with other types of reproductive gland; the biochemical 418 

classes of the molecules that these glands produce; and the role of these products in inducing 419 

important post-mating responses such as increased egg laying, ovulation, immune gene 420 

expression, and feeding (Avila et al., 2011; Gillott, 2003; Hopkins et al., 2017; Mueller et al., 421 

2004; Poiani, 2006). Although many of the effects induced by seminal secretions appear to 422 

benefit both sexes in terms of their regulated fertility, some actions of seminal proteins can be 423 

deleterious to the female, decreasing her longevity or manipulating her behavior in ways that 424 

do not seem to serve her interests. To paraphrase Dobzhansky (Dobzhansky, 1973), in order to 425 

fully appreciate the biology of insect reproductive glands, we must understand the forces that 426 

have guided their evolution. These forces include: 427 

 428 

a). Sexual selection 429 

Due to their importance for reproductive success, male reproductive processes have been 430 

subject to strong and divergent selection. This concept of ‘selection in relation to sex’ was 431 

first laid out by Darwin 12 years after the publication of his theory of evolution by natural 432 

selection. ‘Sickened’ by the peacock’s exaggerated plumage, Darwin sought to understand 433 

why such elaborate and seemingly deleterious traits can be maintained in populations. His 434 

solution came through focusing not on an individual’s struggle for survival, but rather on its 435 

struggle for matings (Darwin, 1871). Sexual selection theory is built on these conceptual 436 

foundations, positing that evolutionary change can be driven by (a) competition between 437 



 21 

individuals of one sex for access to individuals of the other (intrasexual selection), and (b) 438 

preferences held by members of one sex for certain features in the other (intersexual 439 

selection).  440 

 441 

b). Post-copulatory sexual selection: sperm competition 442 

In 1970, Geoff Parker recognized that if a female mates multiply, as occurs in many insect 443 

species, a male’s reproductive success depends on more than just his ability to compete for 444 

a mate (Parker, 1970). In such polyandrous mating systems, the opportunity for sexual 445 

selection continues after ejaculation through ‘sperm competition’, the competition between 446 

sperm from rival males for access to oocytes. In recent years, the development of Drosophila 447 

lines expressing green- or red-fluorescent proteins in sperm heads has facilitated the 448 

visualization of this process in these insects (Figure 5).  449 

 450 

 
 

Figure 5. Visualizing sperm competition in Drosophila. Sperm from two males are seen 

within the seminal receptacle of a doubly-mated female. The heads of the sperm from the 

first male are green (due to protamine-GFP); from the second male are red (protamine-

RFP). 
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Reprinted from Manier, M.K., Belote, J.M., Berden, K.S., et al., 2010. Science 328, 354–

357, with permission. 

 

 451 

Many traits promote the competitiveness of a male’s ejaculate: changes to sperm 452 

morphology to promote faster swimming (even including the formation of motility-boosting 453 

aggregations) (Fisher & Hoekstra, 2010; Higginson & Pitnick, 2011), specialized genital 454 

morphologies that can physically displace a rival’s sperm (Gallup et al., 2003; Waage, 1979, 455 

1986), or the physical guarding of a female from rival males (Mazzi et al., 2009). Products 456 

of the male’s reproductive glands also contribute to these phenomena by affecting sperm 457 

storage and viability in females, potentially disabling the sperm of a rival (S. P A den Boer 458 

et al., 2010), and by a chemical form of mate-guarding: rendering a female unreceptive to 459 

remating (Tracey Chapman et al., 2003; Liu & Kubli, 2003)  or stopping her production of 460 

‘calling’ pheromones, thus preventing other males from being attracted to her (Fan et al., 461 

1999; Kingan et al., 1993; Nagalakshmi et al., 2007; Raina et al., 1994). 462 

 463 

c). Post-copulatory sexual selection: cryptic female choice 464 

The female, however, does not present a passive environment in which sperm competition 465 

plays out. Instead, she provides a partisan space in which the outcome of competition 466 

between rival males can be influenced in accordance with her own distinct evolutionary 467 

interests (Birkhead & Pizzari, 2002; W. G. Eberhard, 2009; William G. Eberhard, 1996; 468 

Firman et al., 2017; Thornhill, 1983). This process, therefore, represents the post-copulatory 469 

analogue of inter-sexual selection and is named cryptic female choice (William G. Eberhard, 470 

1996; Firman et al., 2017; Thornhill, 1983). Males are expected to evolve mechanisms in 471 

response to female choice processes to boost the probability that their sperm will be 472 
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preferentially retained for use in fertilizations. The roles of seminal fluid components in 473 

modulating female insect behaviors (such as sexual receptivity and sperm ejection (Lee et 474 

al., 2015; Lupold et al., 2013)), reproductive tract conformation, physiology, and immunity 475 

(Firman et al., 2017) were likely shaped by their acting within a dynamic female 476 

environment. 477 

 478 

d). Sexual conflict 479 

Selection for traits that promote the success of a male in sperm competition can result in 480 

traits that cause collateral damage to females (Parker, 2006; Tatarnic et al., 2014). This is 481 

thought to apply in the case of Drosophila SP, which limits female remating and thus sperm 482 

competition risk, but has toxic effects that shorten the female’s lifespan (Wigby & Chapman, 483 

2005). Additional SFPs, such as the Drosophila protease inhibitor Acp62F, have also been 484 

shown to be toxic to females (Lung et al., 2002; Wolfner, 2002).  485 

 486 

Conflict can even arise between the interests of males and females long after mating. 487 

Individuals have a finite quantity of resources to allocate to reproduction (Curio, 1983; 488 

Parker et al., 2002; Stearns, 1992; Trivers, 1972).  How a female should best partition these 489 

resources across successive breeding attempts depends on factors including mate quality, 490 

reproductive experience, and age (Curio, 1983; Horváthová et al., 2012; Sheldon, 2000). 491 

For example, her best strategy may be to withhold some resources in a given mating to 492 

allocate to her own immunocompetence, foraging ability, and/or somatic maintenance, thus 493 

boosting the probability that she survives to mate with a subsequent (possibly more fit) male 494 

(Adkins-Regan & Tomaszycki, 2007; Krakauer & Johnstone, 1995). However, the optimal 495 

outcome for her mate is that she should invest at a high level in their brood, increasing the 496 
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number or viability of his offspring. Thus, it is often not possible to simultaneously 497 

maximize the fitness of both male and female, giving rise to evolutionary tension. 498 

 499 

These conflicts can lock males and females into co-evolutionary arms races, each 500 

responding over evolutionary time to the other’s adaptations (Holland & Rice, 1999; 501 

Holland & Rice, 1998; Hosken et al., 2001; Parker, 2006; Rice, 1996; Wigby & Chapman, 502 

2004). For example, if males transfer seminal fluid components that lead to females over-503 

investing in a current reproductive effort, selection for a counter-response could lead to 504 

reduced sensitivity of females to male molecules or mechanisms to neutralize the effects of 505 

those molecules. This, in turn, could drive renewed selection on males for new or stronger 506 

molecules to produce the male-beneficial effect. More complicated three-way evolutionary 507 

arms races arise when selection frees females from male control over their mating rate. This 508 

may intensify the degree of sperm competition, selecting for seminal fluid components in 509 

males that promote their sperm competitive success, but harm females in the process. These 510 

co-evolutionary processes are thought to contribute to rapid evolution in the primary 511 

sequence of a significant fraction of SFPs (Aguade et al., 1992; Findlay et al., 2009; Haerty 512 

et al., 2007; Swanson et al., 2001; Swanson & Vacquier, 2002). The arms races may also 513 

help explain the diversity of seminal fluid products, evolving in response to female counter-514 

evolution (Sirot et al., 2017). 515 

 516 

The conflicts described occur in the context of a process, reproduction, that also requires 517 

cooperation between the sexes: coordination is required between male and female cells and 518 

molecules, for egg-sperm binding, or for the processing of certain SFPs in D. melanogaster 519 

by molecules from both sexes (Avila & Wolfner, 2017; Aydin et al., 2016; Bianchi et al., 520 

2014; Findlay et al., 2014; Inoue et al., 2005; Laflamme & Wolfner, 2013; Ravi Ram et al., 521 
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2006; Yapici et al., 2008). The extent to which conflict should manifest in reproductive 522 

processes will depend upon the degree of asymmetry in the fitness interests of interacting 523 

parties. In species with lifetime monogamy (where that monogamy is not enforced by one 524 

sex against the evolutionary interests of the other (Hosken et al., 2009)), male and female 525 

fitness interests will align closely. Moreover, conflict traits may not evolve even when male 526 

and female fitness interests diverge: the extent of the costs and benefits associated with 527 

antagonistic traits, as well as the opportunity for such traits to evolve (e.g. presence of 528 

sufficient genetic variation), can constrain the manifestation of conflict (Chapman, 2006).  529 

 530 

e). Phenotypic plasticity 531 

Depletion of sperm and SFPs over successive matings constrains male fitness. In D. 532 

melanogaster, for example, SFP replenishment after mating can take ~3 days (Sirot et al., 533 

2009). Therefore, selection should favor the male’s allocating these products in line with the 534 

reproductive context in which he finds himself. Consistent with this hypothesis, males have 535 

evolved to strategically allocate sperm and SFPs to females in response to factors such as 536 

female mating status, sexual novelty, and quality (Lüpold et al., 2011; Pizzari et al., 2003; 537 

Price et al., 2012; Sirot et al., 2011; Wedell et al., 2002; Wigby et al., 2009). In D. 538 

melanogaster, males transfer less ovulin when mating with recently mated females (Sirot, 539 

Wolfner, et al., 2011), but more sex peptide and ovulin when mating in the presence of rival 540 

males (Wigby et al., 2009). 541 

 542 

Concluding remarks 543 

Beyond the sperm and egg, a diversity of seminal fluid molecules are essential for the 544 

reproductive success of insects, as in many other animals. Seminal fluid components regulate 545 

processes that move sperm through the female reproductive tract and into storage, modify the 546 
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reproductive tract to facilitate egg production and transit, and influence feeding and digestion 547 

to assist in high levels of egg production. Effects of seminal fluid components on females may 548 

be beneficial to both members of the mating pair, such as by coupling increased egg production 549 

to mating. Alternatively, they may primarily benefit the male, as is likely the case in their 550 

induction of female refractoriness to remating. Seminal fluid molecules are produced in male 551 

reproductive glands, which themselves vary across insects in number, structure, and cellular 552 

constitution. Ejaculate molecules fall into biochemically-conserved classes, but their sequences 553 

have come under strong selection to boost reproductive success under sperm competition 554 

situations or to co-evolve with reproductive processes in females. Nevertheless, the overlap in 555 

molecular and organellar types in the seminal fluid of insects and other taxa makes it 556 

increasingly apparent that the study of insect accessory glands provides significant and broad 557 

insights into mechanisms of fertility, has implications for our understanding of human male 558 

reproductive gland health and disease, and offers powerful opportunities for targeted control 559 

of insect disease vectors and pests. 560 

 561 
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